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Abstract

The metabolic capabilities and regulatory networks of bacteria have been optimized by evolution in response to selective
pressures present in each species’ native ecological niche. In a new environment, however, the same bacteria may grow
poorly due to regulatory constraints or biochemical deficiencies. Adaptation to such conditions can proceed through the
acquisition of new cellular functionality due to gain of function mutations or via modulation of cellular networks. Using
selection experiments on transposon-mutagenized libraries of bacteria, we illustrate that even under conditions of extreme
nutrient limitation, substantial adaptation can be achieved solely through loss of function mutations, which rewire the
metabolism of the cell without gain of enzymatic or sensory function. A systematic analysis of similar experiments under
more than 100 conditions reveals that adaptive loss of function mutations exist for many environmental challenges.
Drawing on a wealth of examples from published articles, we detail the range of mechanisms through which loss-of-
function mutations can generate such beneficial regulatory changes, without the need for rare, specific mutations to fine-
tune enzymatic activities or network connections. The high rate at which loss-of-function mutations occur suggests that null
mutations play an underappreciated role in the early stages of adaption of bacterial populations to new environments.
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Introduction

Bacteria evolve to exploit the temporal and spatial structure of

their native environments, mapping commonly occurring patterns

of stimuli to high-fitness responses [1,2]. Adaptation occurs

through both the acquisition of requisite biochemical and

biophysical functions, such as enzymatic capabilities and mem-

brane properties, and evolution of a regulatory network that

responds to the environment by deploying the organism’s

phenotypic capacities in a context-appropriate fashion.

In principle, bacteria may grow poorly in a new environment

because they lack necessary biochemical capabilities and biophys-

ical properties, or because they express these existing capacities

inappropriately. In the former case, mutations that tinker with

coding regions to refine existing functions [3–5], horizontal gene

transfers that introduce novel functions [6], and gene amplifica-

tions that enable subsequent neofunctionalization [7] could

generate the missing functionality. In the latter case, a bacterium’s

genome encodes the requisite biochemical and biophysical

functions, but the organism’s sensory and regulatory networks

do not express the functions in a context-appropriate fashion

(Fig. 1A). While rare mutations that modulate specific network

connections can engender the appropriate regulatory capacity (for

example, the hijacking of an aerobic promoter to enable aerobic

citrate metabolism in Escherichia coli during a long term evolution

experiment [8]), comparatively common loss-of-function (null)

mutations [9] that produce less specific perturbations could also

generate advantageous network adjustments.

The maladaptive properties of null mutations, including their

contributions to genome decay are well known [10]. Unlike the

rare, specific changes associated with gain-of-function mutations,

however, the loss-of-function mutational space can be explored

rapidly by an evolving population due to the large number and

variety of sequence-level mutations that can give rise to such

changes. Although adaptive null mutations have been observed in

bacterial laboratory evolution experiments (e.g., [11,12]), the

general potential for null mutations to shape the path of bacterial

evolution has not been systematically investigated, despite their

potential to enhance fitness by re-deploying the existing capabil-

ities of cells (Fig. 1B). In the discussion below, we refer to any effect

in which a single mutation alters cellular fitness by causing non-

local changes in information flow or metabolite flux as ‘rewiring’;

by definition, any beneficial null mutation which does not exert its

impact by removing an actively deleterious reaction must be acting

through rewiring.

As we show below, the reconfiguration of cellular metabolism

triggered by even one or two such changes often yields

improvements in fitness. Rather than provide the cells with
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qualitatively new capabilities, these mutations improve the cells’

application of existing metabolic capabilities to the selective

conditions that they are experiencing. While a series of null

mutations is unlikely to yield optimal deployment of a cell’s

constituent genes under novel conditions, loss-of-function muta-

tions can allow the survival and growth of partially adapted

individuals that might then further evolve and adapt to the new

surroundings (Fig. 1C). Null mutations can also provide access to

alternate evolutionary trajectories via different epistatic interac-

tions [13], further expanding the range of phenotypes accessible to

an evolving population.

Over the past several decades, numerous detailed studies of

specific individual mutants, as well as high-throughput studies of

deletion libraries in both bacteria [14] and yeast [15], have

identified diverse examples of null mutations that provide a fitness

advantage under a wide range of natural and artificial conditions

(specific examples in bacteria are listed in Table S1).

Such beneficial loss-of-function mutations can have varied

functional consequences (summarized below in the context of the

highly schematized cellular network depicted in Figure 2).

The most obvious mechanism for a beneficial null mutation is to

remove a protein or enzyme directly detrimental in the

environment of interest (S or E3 in Fig. 2). For example, deletion

of ompF reduces tetracycline entry into the cell, increasing

tetracycline tolerance [16]. Similarly, deletion of the peptidogly-

can-recycling enzyme slt enhances ethanol tolerance by altering

cell wall structure [17].

Many gene products whose deletion is beneficial, however, act

multiple steps away from the key cellular property that their

deletion modulates. For example, deletion of an enzyme (E2 in

Fig. 2) or an upstream regulator (R1 in Fig. 2) may modify

metabolic flux to better fit the studied environment. This is

illustrated by the combined deletion of fnr, arcA, and cafA, which

enhances ethanol tolerance in E. coli by increasing ethanol

breakdown and subsequent assimilation [17]. Similarly, removal

of proteins involved in catabolism or oxidative respiration

increases resistance to bactericidal antibiotics by ultimately

reducing the production of harmful hydroxyl radicals [18–20].

A cellular network’s underlying modularity often enables a

single regulatory deletion (R2 or R3 in Fig. 2) to alter the levels of

multiple components coherently. For example, mutations in many

signaling pathways feeding into flhDC, the master regulator of

flagellar biogenesis in E. coli, can modulate flagella-based cellular

motility, such as deletion of ompR or envZ enhancing motility in

high-salt conditions [21]. Similarly, the high connectivity of

housekeeping genes (H in Fig. 2) in the cellular network can allow

their removal to trigger beneficial phenotypes under diverse

environments, such as the deletion of Lon protease conferring an

advantage in the presence of A22, b-lactams, and ammonium

chloride [14,18]. Additionally, null or hypomorphic alleles of a

housekeeping gene can move a cell to a radically different part of

Figure 1. A regulatory network adapted for an organism’s native habitat may perform poorly in a new environment. The hypothetical
organism’s fitness (shading) depends only on the concentration of two environmental factors. The area enclosed by the red dotted line indicates the
typical range of these parameters in the native environment. ‘X’ indicates the parameter values in a new environment. (A) Fitness of the wild-type
organism, which is tuned to be optimal in the native environment. Even if an organism’s genome encodes proteins that would confer high fitness in a
new environment, its regulatory network might limit the actual fitness achieved. (B) Fitness of a mutated network that might result from a single
regulatory null mutation. While not optimal, the mutated network may be advantageous in a new environment by breaking the previous mapping of
environment to phenotype. (C) Extended evolution in the new environment will rewire the organism’s regulatory network to allow the cell to
optimize the use of its genetic resources (even in the absence of new genes).
doi:10.1371/journal.pgen.1003617.g001

Author Summary

When bacteria encounter a new challenge in their
environment, such as treatment with an antibiotic or a
poor nutrient source, their population faces tremendous
selective pressure to evolve in order to grow better under
the new conditions. We typically think of bacterial
evolution in terms of what is gained: a bacterium might,
for example, acquire an antibiotic resistance gene, or
modify an existing enzyme to make better use of a
nutrient source. By analyzing the fitness of bacterial
populations under more than 100 different conditions,
we show that in fact what they lose can be equally
important: by rewiring the cell’s metabolism, loss of
function mutations can provide substantial fitness benefits
under many challenging conditions, even cases such as
exotic nutrient combinations where some new enzymatic
function might seem to be required. Loss of function
mutations occur at a much higher frequency than gains of
specific functionality due to the larger mutational target
area available. The combination of the rapid acquisition
and broad functionality of loss-of-function mutations
suggests that they play a major role in the early adaptation
of bacterial populations to new challenges.

Bacterial Adaptation through Loss of Function
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the fitness landscape, where epistatic effects can allow accumula-

tion of favorable secondary mutations [13,22,23].

The key thread uniting these examples, and the broader array of

cases presented in Table S1, is that by altering gene expression and

the flow of metabolites, loss-of-function mutations trigger far

reaching changes in the cell’s regulation and metabolism. As

detailed in the meta-analysis presented below, these changes

frequently prove adaptive under novel environments. The relative

abundance of null mutations coupled with their adaptive potential

suggests that specific null mutations likely represent common early

steps in the evolution of bacterial populations encountering a new

environment.

Here, we examine comprehensively the potential of loss-of-

function mutations for adaptation to novel environments. We first

use a meta-analysis of genome-wide fitness data from transposon-

insertion and in-frame deletion mutations across 144 conditions

from 7 studies (including new findings described below) to show

that adaptive null mutations are extremely abundant and

disproportionately affect enzymatic and regulatory pathways. We

then take as a case study the fitness profile of populations of E. coli

transposon-insertion mutants in a set of unusual, nutrient-limited

environments. The transposon insertions provide a convenient

method to generate tagged null mutations that can be easily

identified on a genome-wide scale and are likely to reflect

phenotypes arising from common indels and point mutations that

result in loss-of-function. In our media challenges, single loss-of-

function mutations are sufficient to increase the growth rate up to

twofold, demonstrating the suboptimal utilization of existing

capacities by the wild-type strain and the ease with which null

mutations can enhance fitness through metabolic and regulatory

network rewiring.

Results

Beneficial null mutations preferentially target enzymatic
and regulatory functions

Cases of beneficial null mutations have been noted previously in

a wide variety of studies of both laboratory-evolved and wild

strains; many of the best-characterized examples are summarized

in Table S1. Any such list, however, is biased by the limited set of

conditions and mutants that have been characterized in detail.

The increasing availability of quantitative fitness data from

genome-wide screens of loss-of-function mutants in a wide variety

of conditions allowed us to systematically study the adaptive

potential of null mutations at a much more comprehensive scale.

We performed a meta-analysis of null mutation fitness data from

a total of 144 conditions from 7 studies in E. coli MG1655 and

BW25113 (including new data described below). For each

condition, we identified genes for which null mutations gave

significant increases or decreases in fitness and then examined the

complete data set for evidence of over-representation of specific

biological functions (see Materials and Methods for details on the

data sets, which included experiments from both in-frame

deletions and transposon-mutagenized libraries, and statistical

processing).

While the relative portions of each functional class showing

significant fitness effects (positive or negative) upon deletion varied

greatly among the conditions (see Fig. S1), some clear trends were

present. Overall, at least one beneficial null mutation was

identified in all but five of the 144 conditions considered. In

particular, we found adaptive (and maladaptive) deletions of

regulatory proteins and enzymes in over half of the experimental

conditions assayed (Fig. 3A,B), while significant contributions from

Figure 2. Null mutations increase fitness through varied mechanisms. (A) In a hypothetical cellular network, E1–E4 are enzymes, M1–M5 are
metabolites, S is a structural protein, R1–R3 are regulatory proteins, and H is a housekeeping protein that inhibits translation and promotes
degradation of some mRNAs. Dotted lines indicate other activities of the indicated proteins. The fitness of cells depends only on the levels of S, M2,
and M5. (B,C) Optimal concentrations of S, M2, and M5 in the native environment (B) and a novel environment to which the cells might need to
adapt (C). Null mutations adaptive in the novel environment are marked in panel (A) with an orange ‘x’.
doi:10.1371/journal.pgen.1003617.g002

Bacterial Adaptation through Loss of Function
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Figure 3. Contributions of null mutations to fitness by functional category. (A,B) Percentage of members of each class for which null
mutations caused significantly beneficial (A) or deleterious (B) fitness effects in at least 5%, 25%, 50%, and 75% of the 144 conditions analyzed.
Colored labels on the x-axis indicate classes with a significant enrichment in null mutations (q,0.01 by a resampling test; see main text and Table S2).
(C,D) Circles: total number of significant beneficial (C) or deleterious (D) null mutations present in each class across all conditions in our meta-
analysis. Box plots: simulated null distribution of the same statistic for each class (see main text and Materials and Methods for details). Classes
showing significant enrichments (q,0.01) relative to the corresponding null distribution have their label colored on the x-axis and the circle
representing their observed value filled in green. No bar appears for the RNA class in panel A because fewer than 5% of the conditions had beneficial
nulls from the RNA class; see main text for details. All classifications are from GenProtEC (http://genprotec.mbl.edu/files/geneproductfunctions.txt).
doi:10.1371/journal.pgen.1003617.g003

Bacterial Adaptation through Loss of Function
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other classes were generally less frequent. For a more quantitative

assessment, we used a resampling approach to determine the

significance of each category’s contribution to the observed fitness

changes relative to its size (Fig. 3C,D and Table S2). Only

enzymes and regulatory proteins showed enrichments of null

mutations that both raise and lower fitness. Structural proteins and

RNA genes also contained significant numbers of beneficial

deletions, mainly due to a large number of beneficial deletions

from those classes present in a small number of experimental

conditions (we could not, however, detect a notable unifying factor

in the conditions under which null mutations in these classes of

genes were beneficial). The RNA case in particular is dominated

by two conditions under which transposon insertions in ribosomal

RNAs were beneficial, and thus must be viewed with some

caution. On the other side, membrane proteins, lipoproteins, and

cell process proteins also contributed higher than expected

numbers of deleterious null mutations, although their contribu-

tions were still lower than the frequency for enzymes or regulatory

proteins. The abundance of adaptive regulatory null mutations

was perhaps our most striking finding; the fact that purely

regulatory mutations can allow bacteria to adapt to a wide variety

of extreme conditions illustrates the extent to which the

physiological capabilities of microbes exceed their regulatory

logic, and the relative ease with which knockouts of appropriate

regulators can rapidly rewire a maladaptive regulatory network. It

was also instructive to consider the breadth of conditions under

which a given null mutation could be adaptive; the set of genes for

which null mutations were beneficial in at least 10 conditions in

our meta-analysis is shown in Table S3. Consistent with the above

findings, 6 out of 7 such genes coded for either enzymes or

regulatory proteins, and housekeeping genes (lon, dnaJ) played a

particularly prominent role. It is likely that these null mutations, as

well as loss of function of the nucleoid-associated protein fis, exert

their widespread beneficial effects by globally altering expression

of other genes, similar to the mechanism of action of a recently

characterized rho hypomorph that proved beneficial in more than

ten different conditions [23].

Abundance of strongly beneficial null mutations under
severe nutrient deprivation

The previously published data sets analyzed above consist

primarily (although not entirely) of chemical or physical hazards

added to otherwise standard growth media. An equally realistic

scenario for a microbe is to encounter nutrients that the organism’s

metabolism is poorly equipped to utilize. The relative roles of

regulatory rewiring vs. acquisition of new functions in adaptation

to such conditions and the potential for adaptive null mutations in

these cases remain largely unexplored. To further understand the

potential for null mutations to alter fitness in the face of a

metabolically challenging environment and to explore the

mechanisms employed, we propagated a library of E. coli

MG1655 transposon-insertion mutants [21] in four media

conditions where the parental strain grew poorly (defined M9

media with alanine, glutamine, aspartic acid, or asparagine as the

sole carbon source; see Fig. 4A). In addition to including the data

in our meta-analysis, we identified the 809 insertion locations that

caused the greatest increases and decreases in fitness (Fig. 4B) (see

Materials and Methods and Dataset S1). The use of a transposon

library, containing ,106 disruptive perturbations, allowed us to

explore the space of possible adaptive null mutations more rapidly

and comprehensively than evolutionary approaches. Although

such mutations are unlikely to be found in the wild, the resulting

phenotypes mirror those of common point mutations or small

insertions and deletions that cause loss of function.

Using the pathway analysis tool iPAGE [24], we found that

clusters of genes whose disruption was deleterious (clusters 1–4) are

enriched for genes whose products participate in nucleotide and

amino acid biosynthesis, functions essential in the growth media

we used (Fig. 4B,C). In contrast, the clusters containing beneficial

insertion locations (clusters 5–9) showed varied and generally weak

functional enrichments, suggesting that alterations to many distinct

pathways can increase fitness.

As transposon insertions do not necessarily cause a null

phenotype [21], we tested in-frame deletions for a representative

set of candidate genes in three of the growth conditions (Table S4).

As expected, many of the null mutants grew significantly faster

than the parental strain in the experimental media (Fig. 5 and

Table S5). Doubling times dropped by as much as 30% for alanine

media and nearly 50% for each of glutamine and asparagine

media – a substantial fitness increase – showing how poorly the

parental strain utilizes its existing capacities in these extreme

environments.

Transcriptome analyses of four fitter-than-wildtype mutants in

each of alanine and glutamine media (Dataset S2) revealed that

each mutant had a distinct expression pattern. While overlaps

among the genes up- and down-regulated in individual mutants

were generally larger than would be expected by chance (Table

S6), the number of genes whose expression exhibited large (.2-

fold) changes (Fig. S2A,B) and the functional categories overrep-

resented among the differentially expressed genes varied widely

among the mutants (Fig. S2C–F). In particular, expression

differences among chemotaxis and flagellar biosynthesis genes

were especially prominent (Fig. S3). The diversity of transcriptome

changes with a net beneficial effect illustrates the non-optimality of

the wild-type genetic network in the experimental media and the

varied possibilities for improvement. Additionally, the breadth of

transcriptome changes in the Dpgi and DcysQ strains (Fig. S2A,B)

demonstrates the potential for enzymatic null mutations to rewire

a large portion of the cell’s regulatory and metabolic network.

To better understand the mechanisms by which the null

mutations tested above lead to increased fitness, we used flux

balance analysis (FBA), which determines in a regulation-

independent fashion ways a cell could use its metabolic capabilities

to maximize its growth rate in a specific environment [25]. FBA

simulations indicated that E. coli attains its maximum growth rate

in alanine media when the glycine cleavage complex (GCC) is not

utilized (Fig. 6A), consistent with our observed benefits of deletion

of GCC components (Fig. 5A). The cost of synthesizing increasing

amounts of serine only to degrade it to glycine likely accounts for

the decreasing growth rate as GCC flux increases (Fig. 6B).

Simulations also indicated that phosphoglucose isomerase should

be inactive during rapid growth in alanine media because flux

through the enzyme creates a futile cycle (Fig. 6C,D); our results

validated that prediction (Fig. 5A). Both of these examples

illustrate how fitness defects can be caused, not by lack of

enzymatic functions, but rather their context-inappropriate

utilization.

Overall, flux variability analysis [26] indicated that proteins

encoded by ,860 (numbers range from 858 for glutamine media

to 869 for alanine media) of the 1260 genes in the iAF1260

genomic reconstruction for E. coli K-12 MG1655 [27] catalyze

reactions in pathways that must be ‘off’ to allow maximum growth

(see Materials and Methods). Likely a variety of deletions, acting

both directly and indirectly, can reduce or eliminate the

superfluous fluxes.

Consistent with the results of our meta-analysis above, deletions

of regulators also provided substantial fitness advantages; prom-

inent examples are cpxA in alanine media (+22% growth rate) and

Bacterial Adaptation through Loss of Function
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lrp in both glutamine (+82% growth rate) and asparagine media

(+72% growth rate). It is also useful to note that most of the

beneficial mutations studied here are neutral or deleterious in

environments other than the one in which they were identified

(Fig. S4), consistent with the notion that they introduce specific

perturbations that increase cellular fitness in the new environment.

Thus, our results indicate that even when faced with an

environment that imposes severe metabolic challenges, null

mutations can alter the regulatory and metabolic network of

bacterial cells to greatly increase fitness without the gain of

additional enzymatic functions, supporting our broad hypothesis

that null mutations play a substantial role in adapting to diverse

novel environments.

Discussion

Our experimental results and meta-analysis of previous studies

demonstrate the substantial potential of loss-of-function (null)

Figure 4. Identification and characterization of transposon insertion locations that alter fitness in single amino acid media. (A) A
library of ,500,000 independent transposon insertion mutants [21] was grown for ,20 generations in defined media with a single amino acid carbon
source. Serial dilutions were used to keep the cultures in exponential phase. To characterize the distribution of transposon insertion locations in the
population, DNA adjacent to the transposons was amplified, labeled, and hybridized to a custom ORF microarray. (B) K-means clustering was used to
organize the fitness profiles of 809 genes in whose vicinity transposon insertions significantly altered fitness in at least one media (see Materials and
Methods). Each row represents a gene; each column contains data from a different biological replicate. Values compare the fraction of mutants with
transposon insertions in or near each gene before (finitial) and after (ffinal) growth in single amino acid media. Yellow (blue) indicates an increase
(decrease). (C) Shown are functional enrichments and depletions based on Gene Ontology annotations that iPAGE [24] identified in the clusters from
(B) and the genes not in any cluster (‘Other’). ECA: enterobacterial common antigen.
doi:10.1371/journal.pgen.1003617.g004

Bacterial Adaptation through Loss of Function
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mutations to aid in adaptation to novel environments through

regulatory and metabolic rewiring. We find that the overarching

effect of many null mutations is to improve the match between a

cell’s regulatory network, which is well-adapted to the organism’s

native habitat, and the contingencies of the new environment.

This is particularly true for deletions of genes in the two functional

classes in which we see the most widespread over-representation of

beneficial null mutations: enzymes and regulatory proteins (Fig. 3).

Regulatory mutations, especially those in cis-regulatory se-

quences, have long been thought to play an important role in

adaptation (reviewed in [5]), and our work shows that null

mutations in regulators themselves also make a substantial

contribution, increasing and decreasing the activity of cellular

modules and facilitating the emergence of new phenotypes. The

prevalence of adaptive null mutations in regulators illustrates that

the phenotypic capabilities of bacterial cells – that is, the range of

environments in which they possess the capacities to thrive – far

exceed their regulatory capacity, the range of environments in

which they can respond productively. When cells possess the

biochemical capabilities for thriving under extreme conditions but

fail to deploy those resources due to the constraints of the overlying

regulatory network, regulatory mutations can rapidly allow the

appropriate expression of those phenotypic capabilities. The

GASP (growth advantage in stationary phase) phenotype [28]

that arises in very old E. coli cultures provides a clear example:

prolonged incubation in stationary phase yields cells with

mutations that greatly enhance stationary phase fitness, including

null mutations in the regulator lrp [29] and mutations attenuating

activity of the sigma factor rpoS [30,31].

Enzymatic deletions also remodel cellular networks, albeit in a

different way. Metabolic engineers are quite aware that well-

chosen deletions can boost yields by redirecting fluxes or removing

undesirable byproducts [32,33], and the present work presents

multiple examples of the utility of silencing enzymes. Similarly,

when a cell’s regulatory network erroneously expresses a metabolic

pathway, knockouts of one of the component enzymes can often

ameliorate the fitness deficit. For example, Bollenbach and

coworkers recently found that bacterial growth in the presence

of DNA synthesis inhibitors was suboptimal due to overexpression

of ribosomal RNA operons under these conditions and could be

improved by deletion of most copies of those genes [34].

A beneficial mutation need not cause a large fitness gain to

impact the trajectory of an evolving population. Many of the

beneficial null mutations discussed here have phenotypic effects,

such as approximately twofold changes in antibiotic minimum

inhibitory concentration (MIC), smaller than the eventual level of

adaptation observed in laboratory-evolved or clinical populations.

Nevertheless, a population with even a small advantage under

stressful conditions will be favored over time, and the increased

growth rate itself will increase the odds (per unit time) of acquiring

additional adaptive mutations. Furthermore, even the accumula-

tion of many mutations of individually small effect can give rise to

a dramatic phenotypic difference, as has been observed in the case

of antibiotic resistance in both laboratory strains [18] and clinical

[35] populations. The eventual evolutionary trajectory of the

population may include reversion of the original adaptive null

mutation, if the bacteria re-encounter conditions where the gene

function is beneficial.

Beneficial null mutations also enable rapid fitness increases by

presenting a large mutational target size. While both null

mutations and the acquisition of novel protein functions can

cause widespread alterations to cellular phenotypes, the compar-

atively higher probability with which null mutations occur

amplifies their importance in adaptive evolution. In contrast with

Figure 5. Growth rates of mutants with in-frame deletions. Average exponential phase doubling times in defined media with (A) alanine, (B)
glutamine, or (C) asparagine as the sole carbon source. ‘X’s denote individual measurements. Circles indicate mean doubling times. Of the 48 growth
tests performed as a result of the transposon enrichment experiments (24 for alanine, 11 for glutamine, and 13 for asparagine), only the 24 strain/
media combinations that grew significantly faster than the parental strain are shown (1-sided Mann-Whitney test, significance cutoff of 5% false
discovery rate (FDR) for the entire dataset). Significant q-values are in Table S5. WT: wild-type.
doi:10.1371/journal.pgen.1003617.g005

Bacterial Adaptation through Loss of Function
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gain of function mutations that require one of a few specific

changes to a protein or regulatory element, loss of function

mutations can arise from any frameshift, nonsense mutation, or

insertion in a coding region if it occurs early enough in an ORF, as

well as through a variety of missense mutations specific to any

given protein.

We very conservatively estimate that null alleles arise at a rate

on the order of 1028 per gene per cell division (assuming the

mutation rate is on the order of 10210 per nucleotide [36], null

alleles arise only from a nonsense mutation in the first half of an

ORF, the average gene length is 1 kb, and codon usage is

uniformly distributed). Bacteria also carry genetic programs for

generating additional diversity under stress through error-prone

DNA repair pathways [37,38], likely making it even easier for cells

to acquire adaptive null mutations through the generation of

frameshift or missense mutations. Genomic rearrangements

mediated by insertion elements can likewise further accelerate

creation of loss of function mutations. For example, beneficial loss

of function of the rbs operon has been observed to arise at a

frequency of 5 * 1025 per generation in laboratory evolution

experiments due to the operon’s proximity to an IS150 element

[39]. The combination of the rate at which null mutations arise

and the breadth of circumstances under which these mutations can

be beneficial may be at least partly responsible for the observation

that E. coli acquire small beneficial mutations (,1% change in

fitness) at a surprisingly high rate of about 1025 per generation

[40]. Consistently, beneficial null mutations have frequently been

shown to make substantial contributions to fitness in laboratory

evolution experiments [11,12] and in a wide variety of natural

conditions (reviewed in Table S1 and in the examples below).

Most of the beneficial null mutations studied here were

identified in a single culture condition (albeit with the usual

fluctuations in media composition that occur with cell growth in

batch culture); it is likely that adaptation to novel natural

environments involves an even more complex interplay of

physicochemical parameters, where antagonistic pleiotropy may

reduce the adaptive potential of single null mutations. However,

far from being laboratory artifacts, adaptive null mutations are

being increasingly recognized in natural and clinical settings as

well. For example, null mutation-mediated adaptation contributed

to the divergence of Bacillus anthracis from a Bacillus cereus ancestor.

In addition to two virulence-factor encoding plasmids (pXO1 and

pXO2), B. anthracis is characterized by a specific and ubiquitous

nonsense mutation in plcR, which encodes a pleiotropic transcrip-

tional activator [41,42]. The plcR null mutation in B. anthracis leads

to significant reduction in the secretion of several degradative

enzymes and virulence factors [43]. Although conflicting reports

exist about the evolutionary pressures underlying the selection of

Figure 6. Deletions that move a cell towards the theoretically optimum flux distribution. (A) Maximum growth rate of the iAF1260 flux
balance analysis (FBA) model [27] on alanine as the sole carbon source when flux through the glycine cleavage complex is set to the indicated value.
(B) The pathway shows a metabolic flux configuration capable of supporting low-levels of glycine degradation (less than ,9 units in (A)) by the GCC.
(C) Maximum simulated growth rate when flux through phosphoglucose isomerase is set to the indicated value. Positive fluxes (conversion of
glucose to fructose) utilize a cycle where xylose isomerase, which is encoded by b3565, converts fructose back to glucose. To generate negative
fluxes (fructose to glucose), the model runs gluconeogenesis and then degrades the glucose through the pentose phosphate pathway. (D) The
reaction catalyzed by phosphoglucose isomerase connects the gluconeogenesis and glucose degradation pathways.
doi:10.1371/journal.pgen.1003617.g006
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this null mutation [43,44], the current hypothesis is that plcR

inactivation is part of the co-evolution of the chromosome and the

pXO1 and pXO2 plasmids that led to the emergence of B. anthracis

as a separate species [42].

The evolution of pathogenic Shigella strains from their E. coli

ancestors was also mediated by null mutations in several anti-

virulence genes, in addition to the acquisition of pathogenicity

islands and a virulence plasmid [45,46]. Deletion of the cadA gene

and null mutations in the nadA and nadB genes in the Shigella

genome prevent the formation of cadaverine and quinolinate

respectively, and both these molecules inhibit multiple aspects of

Shigella pathogenicity [47–49]. Similarly, null mutations in speG

allow the accumulation of spermidine, which increases Shigella

resistance to oxidative stress and survival within macrophages

[50].

Beneficial null mutations not only aid in the evolution of new

species of pathogens, but can also facilitate the repeated

adaptation of infecting pathogens to specific host niches. For

example, null mutations in key regulators mediate adaptive

diversification of Pseudomonas aeruginosa during chronic lung

infections in cystic fibrosis patients, leading to non-piliation,

flagellum loss, lack of quorum-sensing, and mucoidity from

increased alginate production [51]. The most common cause of

the switch to mucoidity is loss of mucA, which encodes an anti-

sigma factor that sequesters AlgT, an activator of alginate

biosynthetic genes [52]. Loss-of-function mutations in lasR, which

encodes a transcriptional regulator, are frequently seen in isolates

from the cystic fibrosis lung and lead to quorum-sensing-negative

phenotypes and reduced expression of virulence factors [53]. The

phenotypes resulting from these deletions are within the physio-

logical capabilities of the P. aeruginosa genome but are normally

repressed by the regulatory network. Null mutations in important

regulators alter the expression of entire modules and rewire the

network to enable P. aeruginosa to adapt from its original niches as a

free-living organism and acute infectious agent to long-term

survival as a chronic infection in a host, although this adaptation

may be important only for the specific infecting population and

not for the species at large. Improved understanding of the

contributions of null mutations to fitness is thus crucial for

elucidating the evolutionary paths taken by evolving bacterial

populations.

These findings might also facilitate progress on other challenges

such as understanding bacterial adaptation during chronic

infections, engineering bacteria for introduction into novel

environments or microbial communities, and culturing ‘uncultur-

able’ bacteria [54]. Such ‘unculturable’ species might possess all of

the biochemical capabilities necessary to grow in monoculture on

common cultivation media, but simply not utilize them properly in

an environment so different from their native habitat, leading to

an adaptation barrier to lab conditions. Culturing such bacteria

may thus require more sophisticated interventions than simple

supplementation with additional nutrients.

Materials and Methods

Strains and growth conditions
Unless otherwise noted, media was M9 [55] lacking NaCl

(48 mM Na2HPO4, 22 mM KH2PO4, 19 mM NH4Cl, 2 mM

MgSO4, 0.1 mM CaCl2, and 10 mM thiamine), supplemented

with 2 g/L of the carbon source and micronutrients [56] at the

following final concentrations: 3 nM (NH4)6(Mo7O24), 400 nM

H3BO3, 30 nM CoCl2, 10 nM CuSO4, 80 nM MnCl2, and

10 nM ZnSO4. No supplementary iron source was added. LB

media was 1% Bacto Tryptone, 0.5% yeast extract, and 0.5%

NaCl. Due to glutamine’s limited stability in solution, we prepared

glutamine media fresh for each experiment. Media used for

growth curves with glucose included 0.01% Tween-20 to eliminate

optical artifacts due to biofilm formation [23]. Unless otherwise

noted, we grew cell cultures at 37uC and shook them at 250 rpm.

To make clean, in-frame deletions, we transduced KanR

(kanamycin resistance cassette) marked alleles from the Keio

collection [57] into strain AH28 (MG1655 DlacZ) using P1vir

phage [58] and removed the markers using a FLP recombinase

system [59]. We confirmed each mutant’s identity by comparing

sizes of PCR products of the region containing the putative gene

deletion in the mutant and parental strains. Table S4 lists all

strains used in this work.

Competitive enrichments and genetic footprinting
Before starting the single amino acid cultures, we grew thawed

aliquots from the transposon library [21] in LB for three

generations and washed the cells in M9 salts lacking a carbon

source. Next, we added ,108 cells to 5 ml of M9 media with the

appropriate amino acid as the sole carbon source. Using serial

transfers, we maintained the cultures in exponential phase above a

minimum population size of ,108. To reduce the impact of

spontaneous mutations while allowing for the detection of subtle

fitness effects, we harvested and analyzed cultures after twenty

generations [60]. We carried out transposon footprinting as

described previously [21].

Determining significant transposon insertion locations
Data (ratios of transposon signal to genomic DNA signal) were

sum-normalized and then log-transformed (base 2) to give

increases and decreases similar magnitudes. Arrays were normal-

ized to the mean of five hybridizations of the transposon library

prior to selection [21] by fitting a loess [61] curve (with the span

parameter set to 0.3) to the intensities on the experimental array as

a function of the mean intensities for the same genes on the

reference arrays, and then subtracting from each gene the loess-

predicted value. After normalization, transposon insertion loca-

tions that did not change in abundance in response to growth in

single amino acid media should be distributed around zero. As a

summary statistic for each gene in a given condition, we used the

value closest to zero if the normalized values from all replicates

had the same sign and zero if they did not.

To evaluate the significance of the summary statistics, we

constructed a separate null distribution of 500,000 ‘‘genes’’ for

each of the four amino acids. Each gene contained either three (for

alanine, aspartic acid, or glutamine) or two (for asparagine) data

points. Samples for each gene came from a t-distribution with 4

degrees of freedom, with standard deviation equal to the standard

deviation of the normalized experimental samples of a randomly

chosen gene for the amino acid of interest and mean set to the

median of the five data points for a (possibly different) randomly

chosen gene from the normalized, unselected hybridizations.

Summary statistics were calculated for the null distribution as they

were for the data, and gene level p-values were set to the fraction

of null genes with summary statistics exceeding the actual observed

value in magnitude. We chose the significance cutoff for each

amino acid separately to give an estimated 5% FDR.

We excluded genes that the Profiling of E. coli Chromosome

database version 4 marked as essential (http://www.shigen.nig.ac.

jp/ecoli/pec/index.jsp) [62]. Of the 3792 genes tested for

significance, 809 were significant in at least one condition.

Expression profiles were subjected to k-means clustering using

Euclidean distance as the distance metric. For each gene, we

included the expression level in each biological replicate as well as
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the average across replicates for each condition. During clustering,

we assigned columns of averages ten times the weight of columns

of individual biological replicates. For visualization purposes,

enrichment values were restricted to the range between 23 and 3,

and extreme values are shown as either 23 or 3.

FBA simulations
FBA simulations used the iAF1260 genomic reconstruction for

E. coli K-12 MG1655 [27] in MATLAB with SBML and COBRA

toolboxes [26]. Simulations were done in computational minimal

media [27] with the sole carbon source set to 10 mmol g

DW21h21 with the Ec_biomass_iAF1260_core_59p81M biomass

objective function. A gene was deemed non-essential for maximum

growth in a medium if simulation of the full model and the model

lacking that gene gave the same growth rate.

We used Flux Variability Analysis [26] to identify fluxes that

needed to be zero to obtain the maximum growth rate. Then, all

non-essential genes that either by themselves or in combination

with other genes directly catalyzed those reactions were considered

to be in a pathway that needed to be zero for maximum growth.

Due to numerical noise, fluxes were not required to be exactly

zero; changing the thresholds did not alter the results qualitatively.

Growth curves
All growth curves in 96-well plates used flat-bottom, untreated,

polystyrene plates (Corning #3370) with 150 ml of media per well.

To reduce evaporation, we covered samples with 100 ml mineral

oil [63]. A SynergyMx (Biotek; Winooski, VT) read the

absorbance at 600 nm. We subtracted the absorbance of wells

with media and oil but no cells from all readings as background.

Unless otherwise specified, the reader shook the plates continu-

ously on its ‘medium’ setting and maintained the temperature at

37uC.

For growth curves in glucose media, we grew most strains

overnight in the test media and diluted 375-fold into fresh media.

Due to their slow growth rate on glucose, we grew strains ZD8,

Z18, ZD56, ZD59, and ZD60 overnight in glucose media

supplemented with alanine, proline, and asparagine (0.5 g/L

each) and then washed them before final dilution into glucose

media. We measured absorbance every 8 minutes for 36 hr and

calculated growth rates as the least squares fit to the logarithm of

the part of the background-corrected growth curve between

0.015625 and 0.0625 (before taking the logarithm). Most strains

doubled at least three times before reaching the target absorbance

range. For the remaining strains, we identified the exponential

growth region by hand and adjusted the target range as necessary.

The r2 value of each fit was required to be greater than 0.99.

To determine doubling times in alanine media, we grew

cultures overnight in LB, washed them, and diluted them 300-fold

into media in 96-well plates. We shook plates at 250 rpm in an

incubator and measured absorbance several times a day starting at

,20 hours after inoculation; we kept cultures in exponential phase

(background-corrected absorbance less than 0.15) using 15-fold

serial dilutions. The doubling time estimates came from least-

squares fits to the logarithm of the background-corrected

absorbance readings multiplied by the total dilution prior to the

reading. Data for each fit included at least 4 samples (average 11.3)

spanning at least 6 generations (average 14.9) and yielded an r2

value of at least 0.95.

We determined growth rates in glutamine and asparagine

media in two stages. As an initial filter, we attempted to determine

growth rates in 96-well plates as was done for alanine media, but

the wide range of doubling times resulted in lower quality data

than we had obtained in alanine media. Thus, we retested those

mutants that exhibited an advantage over the parental strain

individually. In this second stage, which was used to generate all

data reported for glutamine and asparagine media, we grew strains

as 20 ml cultures in 250 ml flasks and shook them at 250 rpm. We

removed culture samples several times a day and read the

absorbance at 600 nm on an Ultrospec 3100 pro. We started

cultures by diluting washed, LB-grown overnight cultures 100-fold

into fresh test media, and after ,2 generations of growth, we

diluted cultures a second time. Sampling started after an

additional ,1 generation of growth (,3 generations total in the

test media) when the absorbance reached ,0.01 and continued

until the absorbance exceeded 0.1. We identified the linear portion

of the logarithm of each growth curve manually and then

subjected it to a linear least-squares fit to determine the doubling

time.

Transcriptional profiling
We washed and diluted LB-grown overnight cultures into

glutamine or alanine media. After ,5 generations of growth, we

harvested samples undergoing mid-exponential phase growth and

added 2 ml of culture to 4 ml of RNAprotect Bacteria Reagent

(Qiagen). We incubated the mixture at room temperature for

5 min and then centrifuged it at 5000 g for 10 min. We removed

the supernatant and stored the pellet at 280uC. We isolated RNA

using the Norgen Total RNA Purification Kit according to the

manufacturer’s directions except that in the last step we eluted the

RNA in 35 mL of the kit’s elution solution. We poly-adenylated the

RNA by combining 31 ml RNA (undiluted from the previous step)

with 4 ml 106Poly(A) Polymerase Reaction Buffer (New England

Biolabs), 4 ml 10 mM ATP, and 1 ml (5 U) E. coli Poly(A)

polymerase (New England Biolabs) and incubating at 37uC for

30 minutes. Then, we cleaned samples with an RNeasy Mini Kit

(Qiagen) and labeled them with cyanine 3-CTP or cyanine 5-CTP

dye using the Low Input Quick Amp Labeling Kit (Agilent)

starting with 200 ng of RNA per sample. We labeled strain AH28

with Cyanine 5-CTP and mutants with Cyanine 3-CTP. We then

hybridized samples to an Agilent E. coli Gene Expression

Microarray (8615K format, Catalog # G4813A-020097) accord-

ing to the manufacturer’s instructions, scanned the resulting slides

using a High-Resolution C Scanner (Agilent), and extracted

features using Agilent’s Feature Extraction Software version 9.5

using protocol GE2-v5_95_Feb07 without spike-in controls. We

used the ‘LogRatio’ value in subsequent analyses. We averaged all

values for the same ORF and values from the two biological

replicates performed for each comparison.

To estimate the false positive rate, we approximated the null

distribution by taking the difference of the values from the two

biological replicates for the same gene and dividing by two. This

produced a data set with a zero mean and the same noise

distribution as that produced by averaging. We calculated a single

null distribution for all 8 samples (4 mutants in alanine and 4 in

glutamine). Then, the chance of a false positive was the number of

samples from the null distribution greater than 1 or less than 21

(i.e., a two-fold change). The false discovery rate is the estimated

number of false positives divided by the number of genes deemed

significant.

For each mutant, we ran iPAGE [24] in discrete mode on three

sets of genes: those whose expression increased at least 2-fold

between the mutant and the parental strain, those whose

expression decreased at least 2-fold, and the remaining genes.

We also ran iPAGE in continuous mode with various numbers of

bins and identified categories similar to those in Fig. S2.

Expression data are in Dataset S2 and in the Gene Expression

Omnibus (accession GSE30345).
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Meta-analysis
We used a total of 144 data sets showing the fitness effects of

null mutations in E. coli K12 strains; we obtained 113 from the

comprehensive characterization of knockout strains (in the

BW25113 background) performed by Nichols et al. [14], with

the remainder coming from a series of experiments on transposon

mutagenized libraries (in the closely related MG1655 background)

performed by the Tavazoie laboratory [17,18,21,23,64] including

this work. We excluded all genes identified as potentially essential

during the construction of a gene-by-gene deletion library in

BW25113 [57] or in a series of chromosomal deletions [62] from

analysis, as null mutations of essential genes are clearly impossible.

In combining the studies, we followed the significance calling

metrics of the original authors as closely as possible.

For the datasets from Girgis et al. [18] we used the published

significance criteria. For data from Freddolino et al. [23], we

generated a p-value for each gene by resampling the probe level

scores from the full genome-wide distribution 10,000 times to

create a null distribution, and then applied a 1% FDR for

significance calling. Otherwise, for conditions with two or more

biological replicates, we determined significance at a FDR of 5%

as we did for the single amino acid experiments in this work. The

selections from Girgis et al. [21] were extremely stringent, making

insertions resulting in average and below-average fitness effectively

indistinguishable; hence, for those data sets we only included

beneficial insertions in the meta-analysis. Amini et al.’s [64] data

set on biofilm induction by poly-N-acetylglucosamine did not

contain any significant genes at a 5% FDR, so we instead marked

as significant only the three gene deletions whose phenotypes the

work experimentally confirmed.

Similarly, when only a single biological replicate was available

for a condition (motility in high-salt media [21] or fitness in various

ethanol concentrations [17]), we counted as significant only those

deletions whose fitness contributions the studies individually

verified. We assembled a single (non-concentration-specific) set

of deletions altering fitness in ethanol.

To identify significant deletions in the Nichols et al. [14] data set,

we retained the authors’ normalization (each of 324 experiments

individually normalized to zero mean and IQR = 1.35) and the

authors’ null model (normal distribution with zero mean and

standard deviation of one). Then, considering all experiments

collectively, we chose a cutoff corresponding to a 5% FDR.

Finally, for each series of dosage titrations for a given condition,

we used only the data from the highest dose (113 experiments

total). We excluded data from strains carrying hypomorph alleles

of presumed essential genes.

To assess the significance of the numbers of beneficial or

deleterious null mutations of different classes relative to that

expected if the class labels were not significant, we performed the

following resampling test: for each gene class/condition combina-

tion, we generated simulated distributions with the same total

number of elements as the number of genes considered from that

class in the corresponding condition in the real data, with the

probability of each element being ‘true’ (that is, beneficial or

deleterious) equal to the average probability of a gene being

beneficial or deleterious (as appropriate) across all genes under that

condition. For each gene class, we then took the sum of ‘true’

elements across all conditions as a summary statistic. The (one-

tailed) p-value for enrichment of beneficial (or deleterious) genes in

each class is obtained by comparing the observed number of

beneficial (or deleterious) genes in that class to 10,000 simulated

draws for the same class; the p-value is the fraction of those

simulated draws which yield a summary statistic greater than or

equal to the observed value. Significance of these classes was then

determined by applying the Benjamini-Hochberg procedure [65]

to the raw p-values, to identify classes that were significant at an

FDR of 0.01. The resampling procedure described here yields the

distribution shown in Figure 3CD and the q-values in Table S2.

Data availability
Expression Data has been uploaded to the Gene Expression

Omnibus (GEO) (accession GSE30345).

Supporting Information

Dataset S1 Transposon-footprinting data from competitive

enrichments.

(XLS)

Dataset S2 Data from transcriptional profiling of mutants.

(XLS)

Figure S1 Contributions of null mutations to fitness by

functional category. For each of 144 conditions, the fraction of

members from each functional class with significantly beneficial

(left) and deleterious (right) null mutations is shown. Values are

normalized so that each column (condition) sums to 1. Values

above each column show the total number of significant null

mutations for the condition. A value of 21 indicates no significant

mutations were found. Rows and columns were ordered by

hierarchical clustering. Blue dots and red dots indicate data

gathered in the BW25113 and MG1655 backgrounds, respective-

ly. Gene categories are from the GenProtEC database.

(PDF)

Figure S2 Beneficial deletions that confer similar fitness

increases cause distinct transcriptional changes. (A–B) Using the

significance cutoff of an average fold-change of 2 (2 repetitions),

expression of the indicated numbers of genes changed in the

mutants compared to the parental strain in (A) alanine and (B)

glutamine media. The corresponding estimated false discovery

rates for alanine media are 17.4% (DdnaJ), 28.3% (DgcvT), 4.7%

(DcpxA), and 7.5% (Dpgi) and for glutamine media are

10.5%(DdnaJ), 10.0% (Dlrp), 3.6% (Dhfq), and 3.5% (DcysQ). See

Materials and Methods for details. (C–D) Shown are functional

categories identified by iPAGE [24] as enriched among the genes

with decreased expression in (C) alanine or (D) glutamine media.

(E–F) Shown are functional enrichments among the genes

expressed at higher levels in the mutants in (E) alanine and (F)

glutamine media. No significant functional depletions were

identified.

(PDF)

Figure S3 Expression of chemotaxis and flagella biosynthesis

genes. Shown is the expression of chemotaxis and flagella

biosynthesis genes in mutants compared to the expression in the

parental strain. Exponential phase cultures were grown in

glutamine or alanine media as indicated.

(PDF)

Figure S4 Growth rates for deletion mutants in additional

conditions. Growth rates for the strains of Figure 5 in defined

media with (A) alanine, (B) glucose, (C) glutamine, or (D)

asparagine as the sole carbon source (see Materials and Methods).

Only data for conditions other than the one(s) in which the

deletion was initially identified as advantageous are shown. Xs

denote individual measurements. Red squares (black circles)

denote mean growth rates for strains whose doubling time is

(not) significantly different from that of the parental wild-type

(WT) strain (2-sided Mann-Whitney test, 5% FDR calculated

separately for the strains shown in each panel). Zero indicates no
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consistent growth, and these strains did not impact the FDR

calculations. All tests in asparagine media lacked sufficient power

for a finding of significance. Strains showing significant growth

differences in glutamine had a q-value of 0.043. Significant q-

values in glucose are as follows: cpxA: 0.00089, crr: 0.00089, hfq:

0.00089, pgi: 0.00089, lrp: 0.00201, kgtP: 0.00415, cysQ: 0.00460,

cpdA: 0.01955, pgm: 0.04701.

(PDF)

Table S1 Literature examples of beneficial null mutations. a A

deletion acts directly if the gene’s product is at least as close to the

key, fitness-relevant reaction as any other gene of the same

functional category. b For some studies that identified multiple null

mutations, only the best-characterized examples are included.

(DOC)

Table S2 Propensity of genes from different functional classes to

generate beneficial or deleterious null mutations in the test

conditions. a GenProtEC classifications (http://genprotec.mbl.

edu/files/geneproductfunctions.txt) b The number of genes,

excluding essential genes, included in each classification. Not all

data sets report on each gene in each condition. c q-values for the

enrichment of null mutations in a given class (maximum FDR at

which the class would be deemed significant). Values significant at

a 1% FDR are shown in bold.

(DOC)

Table S3 Null mutations beneficial in at least ten of the 144

conditions from our meta-analysis. a GenProtEC classifications

(http://genprotec.mbl.edu/files/geneproductfunctions.txt).

(DOC)

Table S4 Strains used in this work. a Note that additional tests

indicated that ZD42 (Db3609) and ZD1 (Db0015) also have an

advantage over the parental strain in glutamine media, but these

strains were not included in the preliminary testing in glutamine

media; the fitness effect was found when testing the strains with an

advantage in alanine media in the other media. We tested strains

ZD14, ZD35, ZD38, and ZD57 in asparagine media because a

preliminary analysis of the transposon insertion data suggested

they might have a fitness advantage; none of the four strains grew

faster than the parental strain, and in the final analysis of the

transposon data none of the genes met the significance criteria. b

Strains constructed for testing in alanine medium. c Strains

constructed for testing in glutamine medium. d Strains constructed

for testing in asparagine medium.

(DOC)

Table S5 Q-values for Figure 5. a We used a Mann-Whitney test

(1-sided) to compare the doubling time of each mutant with the

parental strain grown in the same media. See Table S4 for a

complete list of the strains tested in each media. Considering all 48

growth tests simultaneously, we chose the significance cutoff to

yield a false discovery rate less than 5% (q-value,0.05). False

positive calculations include mutants tested in only the first stage of

the asparagine or glutamine investigation.

(DOC)

Table S6 Significance of overlaps between sets of differentially

expressed genes. Shown are the sizes of the overlaps among the

sets of genes that increased or decreased at least 2-fold on average

between the mutant and the parental strain in the indicated media.

The probability of an overlap of the given size or larger occurring

by chance was calculated using the hypergeometric distribution. P-

values were adjusted for the 24 comparisons using a Bonferroni

correction. Values greater than 0.05 are not shown.

(DOC)
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